A Mordell-weil Theorem for Abelian Varieties over Fields Generated by Torsion Points

نویسنده

  • MICHAEL LARSEN
چکیده

Let A be an abelian variety over a number field, Tl the ladic Tate module, and Gl the image of the Galois action on Tl. Then Hi(Gl, Tl) is a finite l-group which vanishes for l ≫ 0. We apply this bound for i = 1 and i = 2 to show that ifK denotes the field generated by all torsion points of A, then A(K) is the direct sum of its torsion group and a free abelian group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

18.782 Arithmetic Geometry Lecture Note 25

In the last lecture we proved that the torsion subgroup of the rational points on an elliptic curve E/Q is finite. In this lecture we will prove a special case of Mordell’s theorem, which states that E(Q) is finitely generated. By the structure theorem for finitely generated abelian groups, this implies E(Q) ' Z ⊕ T, where Zr is a free abelian group of rank r, and T is the (necessarily finite) ...

متن کامل

On the elliptic curves of the form $ y^2=x^3-3px $

By the Mordell-Weil theorem‎, ‎the group of rational points on an elliptic curve over a number field is a finitely generated abelian group‎. ‎There is no known algorithm for finding the rank of this group‎. ‎This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves‎, ‎where p is a prime‎.

متن کامل

A Finiteness Theorem in the Galois Cohomology of Algebraic Number Fields

In this note we show that if k is an algebraic number field with algebraic closure I and M is a finitely generated, free Zrmodule with continuous Ga\(k/k)action, then the continuous Galois cohomology group Hl(k, M) is a finitely generated Z,-module under certain conditions on M (see Theorem 1 below). Also, we present a simpler construction of a mapping due to S. Bloch which relates torsion alge...

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

On the Mordell-weil Rank of an Abelian Variety over a Number Field

Let K be a number field and A an abelian variety over K. The K-rational points of A are known to constitute a finitely generated abelian group (Mordell-Weil theorem). The problem studied in this paper is to find an explicit upper bound for the rank r of its free part in terms of other invariants of A/K. This is achieved by a close inspection of the classical proof of the so-called ‘weak Mordell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005